Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genes (Basel) ; 14(4)2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37107603

RESUMO

Telomere shortening or loss of shelterin components activates DNA damage response (DDR) pathways, leading to a replicative senescence that is usually coupled with a senescence-associated secretory phenotype (SASP). Recent studies suggested that telomere aberration that activates DDR may occur, irrespective of telomere length or loss of shelterin complex. The blind mole-rat (Spalax) is a subterranean rodent with exceptional longevity, and its cells demonstrate an uncoupling of senescence and SASP inflammatory components. Herein, we evaluated Spalax relative telomere length, telomerase activity, and shelterin expression, along with telomere-associated DNA damage foci (TAFs) levels with cell passage. We show that telomeres shorten in Spalax fibroblasts similar to the process in rats, and that the telomerase activity is lower. Moreover, we found lower DNA damage foci at the telomeres and a decline in the mRNA expression of two shelterin proteins, known as ATM/ATR repressors. Although additional studies are required for understanding the underling mechanism, our present results imply that Spalax genome protection strategies include effective telomere maintenance, preventing early cellular senescence induced by persistent DDR, thereby contributing to its longevity and healthy aging.


Assuntos
Spalax , Telomerase , Animais , Encurtamento do Telômero/genética , Ratos-Toupeira/genética , Ratos-Toupeira/metabolismo , Spalax/genética , Spalax/metabolismo , Longevidade/genética , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Complexo Shelterina
2.
Mol Biol Evol ; 38(10): 4562-4572, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34240186

RESUMO

Sensory systems are attractive evolutionary models to address how organisms adapt to local environments that can cause ecological speciation. However, tests of these evolutionary models have focused on visual, auditory, and olfactory senses. Here, we show local adaptation of bitter taste receptor genes in two neighboring populations of a wild mammal-the blind mole rat Spalax galili-that show ecological speciation in divergent soil environments. We found that basalt-type bitter receptors showed higher response intensity and sensitivity compared with chalk-type ones using both genetic and cell-based functional analyses. Such functional changes could help animals adapted to basalt soil select plants with less bitterness from diverse local foods, whereas a weaker reception to bitter taste may allow consumption of a greater range of plants for animals inhabiting chalk soil with a scarcity of food supply. Our study shows divergent selection on food resources through local adaptation of bitter receptors, and suggests that taste plays an important yet underappreciated role in speciation.


Assuntos
Spalax , Adaptação Fisiológica/genética , Animais , Especiação Genética , Mamíferos , Spalax/genética , Paladar/genética
3.
Nat Aging ; 1(2): 179-189, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-37118630

RESUMO

A balanced immune response is a cornerstone of healthy aging. Here, we uncover distinctive features of the long-lived blind mole-rat (Spalax spp.) adaptive immune system, relative to humans and mice. The T-cell repertoire remains diverse throughout the Spalax lifespan, suggesting a paucity of large long-lived clones of effector-memory T cells. Expression of master transcription factors of T-cell differentiation, as well as checkpoint and cytotoxicity genes, remains low as Spalax ages. The thymus shrinks as in mice and humans, while interleukin-7 and interleukin-7 receptor expression remains high, potentially reflecting the sustained homeostasis of naive T cells. With aging, immunoglobulin hypermutation level does not increase and the immunoglobulin-M repertoire remains diverse, suggesting shorter B-cell memory and sustained homeostasis of innate-like B cells. The Spalax adaptive immune system thus appears biased towards sustained functional and receptor diversity over specialized, long-lived effector-memory clones-a unique organizational strategy that potentially underlies this animal's extraordinary longevity and healthy aging.


Assuntos
Spalax , Humanos , Camundongos , Animais , Spalax/genética , Interleucina-7/metabolismo , Ratos-Toupeira , Imunidade Adaptativa , Imunoglobulinas/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(51): 32499-32508, 2020 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-33277437

RESUMO

Speciation mechanisms remain controversial. Two speciation models occur in Israeli subterranean mole rats, genus Spalax: a regional speciation cline southward of four peripatric climatic chromosomal species and a local, geologic-edaphic, genic, and sympatric speciation. Here we highlight their genome evolution. The five species were separated into five genetic clusters by single nucleotide polymorphisms, copy number variations (CNVs), repeatome, and methylome in sympatry. The regional interspecific divergence correspond to Pleistocene climatic cycles. Climate warmings caused chromosomal speciation. Triple effective population size, Ne , declines match glacial cold cycles. Adaptive genes evolved under positive selection to underground stresses and to divergent climates, involving interspecies reproductive isolation. Genomic islands evolved mainly due to adaptive evolution involving ancient polymorphisms. Repeatome, including both CNV and LINE1 repetitive elements, separated the five species. Methylation in sympatry identified geologically chalk-basalt species that differentially affect thermoregulation, hypoxia, DNA repair, P53, and other pathways. Genome adaptive evolution highlights climatic and geologic-edaphic stress evolution and the two speciation models, peripatric and sympatric.


Assuntos
Evolução Biológica , Spalax/genética , Simpatria , Adaptação Biológica , Animais , Variações do Número de Cópias de DNA , Epigênese Genética , Evolução Molecular , Fluxo Gênico , Variação Genética , Genética Populacional , Genoma , Israel , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único , Isolamento Reprodutivo , Spalax/fisiologia
5.
Anticancer Drugs ; 31(9): 885-889, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32304406

RESUMO

Heparanase is an endoglycosidase that degrades heparan sulfate side chains of heparan sulfate-proteoglycans. It liberates heparan sulfate-bound growth factors and thereby promotes blood vessel sprouting and angiogenesis. The subterranean blind mole rat, Spalax, is a wild mammal that lives most of its life in underground tunnels where it experiences sharp fluctuations in oxygen and carbon dioxide levels. We described two splice variants of heparanase from Spalax, Splice 7 and splice 36, both devoid of heparanase enzymatic activity. Splice 7 increases tumor growth, while splice 36 functions as a dominant negative to wild-type heparanase and decreases tumor growth and metastasis. Here, we describe two novel splice variants of Spalax heparanase, splice 67 and splice 612. These splice variants result in production of a shorter heparanase proteins that are similar to the wild-type native heparanase in their N-terminal but have unique C-terminals. Both splice 67 and 612 lack heparan sulfate degradation activity.


Assuntos
Glucuronidase/genética , Glucuronidase/metabolismo , Spalax/genética , Spalax/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Células HEK293 , Humanos , Isoenzimas , Transfecção
6.
BMC Evol Biol ; 19(1): 176, 2019 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-31470793

RESUMO

BACKGROUND: Vomeronasal type 1 receptor genes (V1Rs) are expected to detect intraspecific pheromones. It is believed that rodents rely heavily on pheromonal communication mediated by V1Rs, but pheromonal signals are thought to be confined in subterranean rodents that live in underground burrows. Thus, subterranean rodents may show a contrasting mode of V1R evolution compared with their superterranean relatives. RESULTS: We examined the V1R evolution in subterranean rodents by analyzing currently available genomes of 24 rodents, including 19 superterranean and 5 subterranean species from three independent lineages. We identified a lower number of putatively functional V1R genes in each subterranean rodent (a range of 22-40) compared with superterranean species (a range of 63-221). After correcting phylogenetic inertia, the positive correlation remains significant between the small V1R repertoire size and the subterranean lifestyle. To test whether V1Rs have been relaxed from functional constraints in subterranean rodents, we sequenced 22 intact V1Rs in 29 individuals of one subterranean rodent (Spalax galili) from two soil populations, which have been proposed to undergo incipient speciation. We found 12 of the 22 V1Rs to show significant genetic differentiations between the two natural populations, indicative of diversifying selection. CONCLUSION: Our study demonstrates convergent reduction of V1Rs in subterranean rodents from three independent lineages. Meanwhile, it is noteworthy that most V1Rs in the two Spalax populations are under diversifying selection rather than relaxed selection, suggesting that functional constraints on these genes may have retained in some subterranean species.


Assuntos
Evolução Molecular , Receptores Acoplados a Proteínas G/metabolismo , Receptores Odorantes/metabolismo , Spalax/genética , Animais , Feromônios/metabolismo , Filogenia , Receptores Acoplados a Proteínas G/genética , Receptores Odorantes/genética , Seleção Genética , Spalax/classificação , Spalax/fisiologia , Órgão Vomeronasal/metabolismo
7.
BMC Genomics ; 20(1): 17, 2019 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-30621584

RESUMO

BACKGROUND: Spalax, the blind mole rat, developed an extraordinary cancer resistance during 40 million years of evolution in a subterranean, hypoxic, thus DNA damaging, habitat. In 50 years of Spalax research, no spontaneous cancer development has been observed. The mechanisms underlying this resistance are still not clarified. We investigated the genetic difference between Spalax and mice that might enable the Spalax relative resistance to cancer development. We compared Spalax and mice responses to a treatment with the carcinogen 3-Methylcholantrene, as a model to assess Spalax' cancer-resistance. RESULTS: We compared RNA-Seq data of untreated Spalax to Spalax with a tumor and identified a high number of differentially expressed genes. We filtered these genes by their expression in tolerant Spalax that resisted the 3MCA, and in mice, and found 25 genes with a consistent expression pattern in the samples susceptible to cancer among species. Contrasting the expressed genes in Spalax with benign granulomas to those in Spalax with malignant fibrosarcomas elucidated significant differences in several pathways, mainly related to the extracellular matrix and the immune system. We found a central cluster of ECM genes that differ greatly between conditions. Further analysis of these genes revealed potential microRNA targets. We also found higher levels of gene expression of some DNA repair pathways in Spalax than in other murines, like the majority of Fanconi Anemia pathway. CONCLUSION: The comparison of the treated with the untreated tissue revealed a regulatory complex that might give an answer how Spalax is able to restrict the tumor growth. By remodeling the extracellular matrix, the possible growth is limited, and the proliferation of cancer cells was potentially prevented. We hypothesize that this regulatory cluster plays a major role in the cancer resistance of Spalax. Furthermore, we identified 25 additional candidate genes that showed a distinct expression pattern in untreated or tolerant Spalax compared to animals that developed a developed either a benign or malignant tumor. While further study is necessary, we believe that these genes may serve as candidate markers in cancer detection.


Assuntos
Carcinogênese/efeitos dos fármacos , Resistência à Doença/genética , Neoplasias/genética , Spalax/genética , Sequência de Aminoácidos/genética , Animais , Carcinógenos/administração & dosagem , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Neoplasias/patologia , Alinhamento de Sequência , Especificidade da Espécie , Transcriptoma/efeitos dos fármacos , Transcriptoma/genética
8.
Ageing Res Rev ; 47: 18-23, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29913210

RESUMO

Cancer and ageing can be regarded as two different manifestations of the same underlying process-accumulation of cellular damage-and therefore both are closely linked. Nowadays, the ageing of populations worldwide is leading to an unprecedented increase in cancer cases and fatalities, and therefore the understanding of links between cancer and ageing is more important than ever. Spalax is considered an excellent model for ageing and, additionally, for cancer research, due to not show clear age-related phenotypic changes and not develop spontaneous tumours, despite its relatively long lifespan (∼20 years in captivity). Thereby, the purpose of this review is to summarize the recent knowledge on Spalax, with a particular emphasis on the molecular mechanisms associated with their longevity and cancer resistance.


Assuntos
Envelhecimento/genética , Envelhecimento/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Spalax/genética , Spalax/metabolismo , Animais , Hipóxia Celular/fisiologia , Humanos , Neoplasias/prevenção & controle , Especificidade da Espécie
9.
J Exp Biol ; 221(Pt 8)2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29593080

RESUMO

Blind mole rats of the genus Spalax are the only mammalian species to date for which spontaneous cancer has never been reported and resistance to carcinogen-induced cancers has been demonstrated. However, the underlying mechanisms are still poorly understood. The fact that Spalax spp. are also hypoxia-tolerant and long-lived species implies the presence of molecular adaptations to prevent genomic instability, which underlies both cancer and aging. We previously demonstrated the upregulation of transcripts related to DNA replication and repair pathways in Spalax Yet, to date, no direct experimental evidence for improved genomic maintenance has been demonstrated for this genus. Here, we show that compared with skin fibroblasts of the above-ground rat, Spalax carmeli skin fibroblasts in culture resist several types of genotoxic insult, accumulate fewer genotoxic lesions and exhibit an enhanced DNA repair capacity. Our results strongly support that this species has evolved efficient mechanisms to maintain DNA integrity as an adaptation to the stressful conditions in the subterranean habitat.


Assuntos
Dano ao DNA/genética , Reparo do DNA , Spalax/genética , Adaptação Fisiológica/genética , Animais , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Hipóxia , Técnicas In Vitro , Estresse Oxidativo , Ratos , Raios Ultravioleta
10.
Sci Rep ; 7(1): 14348, 2017 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-29084988

RESUMO

The blind subterranean mole rat Spalax shows a remarkable tolerance to hypoxia, cancer-resistance and longevity. Unravelling the genomic basis of these adaptations will be important for biomedical applications. RNA-Seq gene expression data were obtained from normoxic and hypoxic Spalax and rat liver tissue. Hypoxic Spalax broadly downregulates genes from major liver function pathways. This energy-saving response is likely a crucial adaptation to low oxygen levels. In contrast, the hypoxia-sensitive rat shows massive upregulation of energy metabolism genes. Candidate genes with plausible connections to the mole rat's phenotype, such as important key genes related to hypoxia-tolerance, DNA damage repair, tumourigenesis and ageing, are substantially higher expressed in Spalax than in rat. Comparative liver transcriptomics highlights the importance of molecular adaptations at the gene regulatory level in Spalax and pinpoints a variety of starting points for subsequent functional studies.


Assuntos
Hipóxia/metabolismo , Ratos-Toupeira/genética , Ratos-Toupeira/fisiologia , Adaptação Fisiológica/genética , Envelhecimento/genética , Animais , Reparo do DNA , Tolerância a Medicamentos/fisiologia , Metabolismo Energético/fisiologia , Hipóxia/fisiopatologia , Tolerância Imunológica/fisiologia , Fígado/metabolismo , Longevidade/genética , Longevidade/fisiologia , Ratos , Análise de Sequência de RNA , Spalax/genética , Especificidade da Espécie , Transcriptoma/genética
11.
Sci Rep ; 6: 38624, 2016 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-27934892

RESUMO

The subterranean blind mole rat, Spalax, experiences acute hypoxia-reoxygenation cycles in its natural subterranean habitat. At the cellular level, these conditions are known to promote genomic instability, which underlies both cancer and aging. However, Spalax is a long-lived animal and is resistant to both spontaneous and induced cancers. To study this apparent paradox we utilized a computational procedure that allows detecting differences in transcript abundance between Spalax and the closely related above-ground Rattus norvegicus in individuals of different ages. Functional enrichment analysis showed that Spalax whole brain tissues maintain significantly higher normoxic mRNA levels of genes associated with DNA damage repair and DNA metabolism, yet keep significantly lower mRNA levels of genes involved in bioenergetics. Many of the genes that showed higher transcript abundance in Spalax are involved in DNA repair and metabolic pathways that, in other species, were shown to be downregulated under hypoxia, yet are required for overcoming replication- and oxidative-stress during the subsequent reoxygenation. We suggest that these differentially expressed genes may prevent the accumulation of DNA damage in mitotic and post-mitotic cells and defective resumption of replication in mitotic cells, thus maintaining genome integrity as an adaptation to acute hypoxia-reoxygenation cycles.


Assuntos
Adaptação Biológica , Encéfalo/metabolismo , Resistência à Doença , Metabolismo Energético , Hipóxia/genética , Hipóxia/metabolismo , Spalax/genética , Spalax/metabolismo , Transcriptoma , Animais , Biologia Computacional/métodos , Predisposição Genética para Doença , Sequenciamento de Nucleotídeos em Larga Escala , Reprodutibilidade dos Testes , Análise de Sequência de RNA , Transdução de Sinais , Especificidade da Espécie
12.
BMC Evol Biol ; 16: 177, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27590526

RESUMO

BACKGROUND: The subterranean blind mole rat, Spalax (genus Nannospalax) endures extreme hypoxic conditions and fluctuations in oxygen levels that threaten DNA integrity. Nevertheless, Spalax is long-lived, does not develop spontaneous cancer, and exhibits an outstanding resistance to carcinogenesis in vivo, as well as anti-cancer capabilities in vitro. We hypothesized that adaptations to similar extreme environmental conditions involve common mechanisms for overcoming stress-induced DNA damage. Therefore, we aimed to identify shared features among species that are adapted to hypoxic stress in the sequence of the tumor-suppressor protein p53, a master regulator of the DNA-damage response (DDR). RESULTS: We found that the sequences of p53 transactivation subdomain 2 (TAD2) and tetramerization and regulatory domains (TD and RD) are more similar among hypoxia-tolerant species than expected from phylogeny. Specific positions in these domains composed patterns that are more frequent in hypoxia-tolerant species and have proven to be good predictors of species' classification into stress-related categories. Some of these positions, which are known to be involved in the interactions between p53 and critical DDR proteins, were identified as positively selected. By 3D modeling of p53 interactions with the coactivator p300 and the DNA repair protein RPA70, we demonstrated that, compared to humans, these substitutions potentially reduce the binding of these proteins to Spalax p53. CONCLUSIONS: We conclude that extreme hypoxic conditions may have led to convergent evolutionary adaptations of the DDR via TAD2 and TD/RD domains of p53.


Assuntos
Evolução Biológica , Reparo do DNA , Spalax/genética , Proteína Supressora de Tumor p53/genética , Adaptação Fisiológica , Sequência de Aminoácidos , Animais , Hipóxia/veterinária , Modelos Moleculares , Neoplasias/genética , Neoplasias/veterinária , Oxigênio/metabolismo , Alinhamento de Sequência , Spalax/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
13.
Proc Natl Acad Sci U S A ; 113(27): 7584-9, 2016 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-27339131

RESUMO

Incipient sympatric speciation in blind mole rat, Spalax galili, in Israel, caused by sharp ecological divergence of abutting chalk-basalt ecologies, has been proposed previously based on mitochondrial and whole-genome nuclear DNA. Here, we present new evidence, including transcriptome, DNA editing, microRNA, and codon usage, substantiating earlier evidence for adaptive divergence in the abutting chalk and basalt populations. Genetic divergence, based on the previous and new evidence, is ongoing despite restricted gene flow between the two populations. The principal component analysis, neighbor-joining tree, and genetic structure analysis of the transcriptome clearly show the clustered divergent two mole rat populations. Gene-expression level analysis indicates that the population transcriptome divergence is displayed not only by soil divergence but also by sex. Gene ontology enrichment of the differentially expressed genes from the two abutting soil populations highlights reproductive isolation. Alternative splicing variation of the two abutting soil populations displays two distinct splicing patterns. L-shaped FST distribution indicates that the two populations have undergone divergence with gene flow. Transcriptome divergent genes highlight neurogenetics and nutrition characterizing the chalk population, and energetics, metabolism, musculature, and sensory perception characterizing the abutting basalt population. Remarkably, microRNAs also display divergence between the two populations. The GC content is significantly higher in chalk than in basalt, and stress-response genes mostly prefer nonoptimal codons. The multiple lines of evidence of ecological-genomic and genetic divergence highlight that natural selection overrules the gene flow between the two abutting populations, substantiating the sharp ecological chalk-basalt divergence driving sympatric speciation.


Assuntos
Especiação Genética , MicroRNAs/metabolismo , Spalax/genética , Simpatria , Transcriptoma , Animais , Carbonato de Cálcio , Ecossistema , Feminino , Fluxo Gênico , Masculino , Silicatos , Solo , Spalax/metabolismo
14.
Yi Chuan ; 38(5): 411-7, 2016 05.
Artigo em Chinês | MEDLINE | ID: mdl-27232489

RESUMO

Rodents, including the nude mice with congenital aplasia of the thymus, cancer-resistant naked mole rat (Heterocephalus glaber) and blind mole rat (Spalax galili), are important model organisms that are widely used in biomedical research. The aging process is closely related to cancer incidence in mammals and the aging degree is positively correlated with the risk of cancer. Since rodents account for 40% of mammals, study of the unique antitumor mechanism in long-lived rodents is very important. Replicative senescence is anti-tumor mechanism that prevalently exist in rodents, however, unique anti-tumor mechanisms have been found in naked mole-rats and blind mole-rats. The cancer resistance of Spalax galili is mediated by cell-released IFN-ß which activates p53 and Rb signaling pathway and the cells undergoes concerted cell death while that of Heterocephalus glaber is mediated by high molecular weight hyaluronan (HMW-HA) which causes contact inhibition. In addition, highly expressed pro-cell-death and anti-inflammation related genes are found in the genome of both naked mole-rats and blind mole-rats. In this review, we summarize the anti-tumor mechanisms in both Heterocephalus glaber and Spalax galili, which may provide information for related research.


Assuntos
Ratos-Toupeira/genética , Neoplasias/veterinária , Doenças dos Roedores/genética , Spalax/genética , Animais , Senescência Celular , Ácido Hialurônico/fisiologia , Interferon beta/fisiologia , Neoplasias/genética , Proteína do Retinoblastoma/fisiologia , Proteína Supressora de Tumor p53/fisiologia
15.
Proc Natl Acad Sci U S A ; 113(8): 2146-51, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26858405

RESUMO

Epigenetic modifications play significant roles in adaptive evolution. The tumor suppressor p53, well known for controlling cell fate and maintaining genomic stability, is much less known as a master gene in environmental adaptation involving methylation modifications. The blind subterranean mole rat Spalax eherenbergi superspecies in Israel consists of four species that speciated peripatrically. Remarkably, the northern Galilee species Spalax galili (2n = 52) underwent adaptive ecological sympatric speciation, caused by the sharply divergent chalk and basalt ecologies. This was demonstrated by mitochondrial and nuclear genomic evidence. Here we show that the expression patterns of the p53 regulatory pathway diversified between the abutting sympatric populations of S. galili in sharply divergent chalk-basalt ecologies. We identified higher methylation on several sites of the p53 promoter in the population living in chalk soil (chalk population). Site mutagenesis showed that methylation on these sites linked to the transcriptional repression of p53 involving Cut-Like Homeobox 1 (Cux1), paired box 4 (Pax 4), Pax 6, and activator protein 1 (AP-1). Diverse expression levels of p53 between the incipiently sympatrically speciating chalk-basalt abutting populations of S. galili selectively affected cell-cycle arrest but not apoptosis. We hypothesize that methylation modification of p53 has adaptively shifted in supervising its target genes during sympatric speciation of S. galili to cope with the contrasting environmental stresses of the abutting divergent chalk-basalt ecologies.


Assuntos
Metilação de DNA , Genes p53 , Spalax/genética , Spalax/metabolismo , Adaptação Biológica , Animais , Carbonato de Cálcio , Pontos de Checagem do Ciclo Celular/genética , Ecossistema , Evolução Molecular , Expressão Gênica , Especiação Genética , Genética Populacional , Pulmão/metabolismo , Regiões Promotoras Genéticas , Silicatos , Solo , Spalax/classificação , Simpatria
16.
Proc Natl Acad Sci U S A ; 112(38): 11905-10, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26340990

RESUMO

Sympatric speciation (SS), i.e., speciation within a freely breeding population or in contiguous populations, was first proposed by Darwin [Darwin C (1859) On the Origins of Species by Means of Natural Selection] and is still controversial despite theoretical support [Gavrilets S (2004) Fitness Landscapes and the Origin of Species (MPB-41)] and mounting empirical evidence. Speciation of subterranean mammals generally, including the genus Spalax, was considered hitherto allopatric, whereby new species arise primarily through geographic isolation. Here we show in Spalax a case of genome-wide divergence analysis in mammals, demonstrating that SS in continuous populations, with gene flow, encompasses multiple widespread genomic adaptive complexes, associated with the sharply divergent ecologies. The two abutting soil populations of S. galili in northern Israel habituate the ancestral Senonian chalk population and abutting derivative Plio-Pleistocene basalt population. Population divergence originated ∼0.2-0.4 Mya based on both nuclear and mitochondrial genome analyses. Population structure analysis displayed two distinctly divergent clusters of chalk and basalt populations. Natural selection has acted on 300+ genes across the genome, diverging Spalax chalk and basalt soil populations. Gene ontology enrichment analysis highlights strong but differential soil population adaptive complexes: in basalt, sensory perception, musculature, metabolism, and energetics, and in chalk, nutrition and neurogenetics are outstanding. Population differentiation of chemoreceptor genes suggests intersoil population's mate and habitat choice substantiating SS. Importantly, distinctions in protein degradation may also contribute to SS. Natural selection and natural genetic engineering [Shapiro JA (2011) Evolution: A View From the 21st Century] overrule gene flow, evolving divergent ecological adaptive complexes. Sharp ecological divergences abound in nature; therefore, SS appears to be an important mode of speciation as first envisaged by Darwin [Darwin C (1859) On the Origins of Species by Means of Natural Selection].


Assuntos
Especiação Genética , Variação Genética , Genoma , Spalax/genética , Simpatria/genética , Animais , Teorema de Bayes , Ontologia Genética , Desequilíbrio de Ligação/genética , Dados de Sequência Molecular , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Dinâmica Populacional , Proteólise , Receptores Odorantes/genética , Análise de Sequência de DNA
17.
PLoS One ; 10(7): e0133157, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26192762

RESUMO

A costly search for food in subterranean rodents resulted in various adaptations improving their foraging success under given ecological conditions. In Spalax ehrenbergi superspecies, adaptations to local ecological conditions can promote speciation, which was recently supposed to occur even in sympatry at sites where two soil types of contrasting characteristics abut each other. Quantitative description of ecological conditions in such a site has been, nevertheless, missing. We measured characteristics of food supply and soil within 16 home ranges of blind mole rats Spalax galili in an area subdivided into two parts formed by basaltic soil and pale rendzina. We also mapped nine complete mole rat burrow systems to compare burrowing patterns between the soil types. Basaltic soil had a higher food supply and was harder than rendzina even under higher moisture content and lower bulk density. Population density of mole rats was five-times lower in rendzina, possibly due to the lower food supply and higher cover of Sarcopoterium shrubs which seem to be avoided by mole rats. A combination of food supply and soil parameters probably influences burrowing patterns resulting in shorter and more complex burrow systems in basaltic soil.


Assuntos
Adaptação Fisiológica/genética , Ecossistema , Especiação Genética , Solo , Spalax/fisiologia , Simpatria/fisiologia , Animais , Comportamento Animal , Spalax/genética
18.
Biol Reprod ; 91(6): 148, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25339103

RESUMO

Syncytins are fusogenic envelope (env) genes of retroviral origin that have been captured for a function in placentation. Multiple independent events of syncytin gene capture were found to have occurred in primates, rodents, lagomorphs, carnivores, and ruminants. In the mouse, two syncytin-A and -B genes are present, which trigger the formation of the two-layered placental syncytiotrophoblast at the maternal-fetal interface, a structure classified as hemotrichorial. Here, we identified syncytin-A and -B orthologous genes in the genome of all Muroidea species analyzed, thus dating their capture back to about at least 40 million years ago, with evidence that they evolved under strong purifying selection. We further show, in the divergent Spalacidae lineage (blind mole rats [Spalax]), that both syncytins have conserved placenta-specific expression, as revealed by RT-PCR analysis of a panel of Spalax galili tissues, and display fusogenic activity, using ex vivo cell-cell fusion assays. Refined analysis of the placental architecture and ultrastructure revealed that the Spalax placenta displays a hemotrichorial organization of the interhemal membranes, as similarly observed for other Muroidea species, yet with only one trophoblastic cell layer being clearly syncytialized. In situ hybridization experiments further localized syncytin transcripts at the level of these differentiated interhemal membranes. These findings argue for a role of syncytin gene capture in the establishment of the original hemotrichorial placenta of Muroidea, and more generally in the diversity of placental structures among mammals.


Assuntos
Retrovirus Endógenos/genética , Produtos do Gene env/genética , Placentação , Proteínas da Gravidez/genética , Spalax/genética , Sequência de Aminoácidos , Animais , Arvicolinae , Sequência Conservada , Cricetinae , Feminino , Camundongos , Ratos-Toupeira , Dados de Sequência Molecular , Filogenia , Placentação/genética , Gravidez , Ratos , Homologia de Sequência de Aminoácidos , Proteínas do Envelope Viral/genética
19.
Nat Commun ; 5: 3966, 2014 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-24892994

RESUMO

The blind mole rat (BMR), Spalax galili, is an excellent model for studying mammalian adaptation to life underground and medical applications. The BMR spends its entire life underground, protecting itself from predators and climatic fluctuations while challenging it with multiple stressors such as darkness, hypoxia, hypercapnia, energetics and high pathonecity. Here we sequence and analyse the BMR genome and transcriptome, highlighting the possible genomic adaptive responses to the underground stressors. Our results show high rates of RNA/DNA editing, reduced chromosome rearrangements, an over-representation of short interspersed elements (SINEs) probably linked to hypoxia tolerance, degeneration of vision and progression of photoperiodic perception, tolerance to hypercapnia and hypoxia and resistance to cancer. The remarkable traits of the BMR, together with its genomic and transcriptomic information, enhance our understanding of adaptation to extreme environments and will enable the utilization of BMR models for biomedical research in the fight against cancer, stroke and cardiovascular diseases.


Assuntos
Adaptação Fisiológica/genética , Evolução Molecular , Genoma , Hipercapnia , Hipóxia , Spalax/genética , Estresse Fisiológico , Transcriptoma/genética , Animais , Escuridão , Perfilação da Expressão Gênica , Edição de RNA/genética , Elementos Nucleotídeos Curtos e Dispersos
20.
PLoS One ; 8(7): e69346, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935991

RESUMO

BACKGROUND: Concealing coloration in rodents is well established. However, only a few studies examined how soil color, pelage color, hair-melanin content, and genetics (i.e., the causal chain) synergize to configure it. This study investigates the causal chain of dorsal coloration in Israeli subterranean blind mole rats, Spalax ehrenbergi. METHODS: We examined pelage coloration of 128 adult animals from 11 populations belonging to four species of Spalax ehrenbergi superspecies (Spalax galili, Spalax golani, Spalax carmeli, and Spalax judaei) and the corresponding coloration of soil samples from the collection sites using a digital colorimeter. Additionally, we quantified hair-melanin contents of 67 animals using HPLC and sequenced the MC1R gene in 68 individuals from all four mole rat species. RESULTS: Due to high variability of soil colors, the correlation between soil and pelage color coordinates was weak and significant only between soil hue and pelage lightness. Multiple stepwise forward regression revealed that soil lightness was significantly associated with all pelage color variables. Pelage color lightness among the four species increased with the higher southward aridity in accordance to Gloger's rule (darker in humid habitats and lighter in arid habitats). Darker and lighter pelage colors are associated with darker basalt and terra rossa, and lighter rendzina soils, respectively. Despite soil lightness varying significantly, pelage lightness and eumelanin converged among populations living in similar soil types. Partial sequencing of the MC1R gene identified three allelic variants, two of which were predominant in northern species (S. galili and S. golani), and the third was exclusive to southern species (S. carmeli and S. judaei), which might have caused the differences found in pheomelanin/eumelanin ratio. CONCLUSION/SIGNIFICANCE: Darker dorsal pelage in darker basalt and terra rossa soils in the north and lighter pelage in rendzina and loess soils in the south reflect the combined results of crypsis and thermoregulatory function following Gloger's rule.


Assuntos
Adaptação Fisiológica/genética , Melaninas/genética , Pigmentos Biológicos/genética , Receptor Tipo 1 de Melanocortina/genética , Spalax/genética , Animais , Cor , Colorimetria , Feminino , Expressão Gênica , Interação Gene-Ambiente , Variação Genética , Israel , Masculino , Melaninas/biossíntese , Pigmentos Biológicos/metabolismo , Receptor Tipo 1 de Melanocortina/metabolismo , Solo/química , Spalax/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...